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Outline

Some Traditional Methods of Measuring Emittance
Emittance Dependence on Envelope Mode Frequency

Experimental Excitation of Envelope Resonances at the
University of Maryland Electron Ring (UMER)

Using Simulations to Infer Emittance from Experimental
Measurements

Application to Other High-Intensity Circular Accelerators



Measuring Emittance
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* Pepperpots

* Quad Scans
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Uli Raich. USPAS Lecture Notes, http://uspas.fnal.gov/materials/fO9UNM/Emittance.pdf




My Idea

 New method of measuring emittance
— Sensitive
— Non-invasive

— Works for high-intensity beams in circular
accelerators

 Now: brief introduction to envelope modes



Beam Envelope 1n the Smooth
Approximation

* For simplicity, approximate A-G lattice by an average focusing
force

X1 +xdx (s)X=2K/X+V —&lxT 12 /

Described by the rms X713 =0

Envelope Equations: V' +xdy (s)V=2K/X+YV —clyT 12 /

Y73 =0
matched envelope (smooth)
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“1-D” Simple Harmonic Motion

Ri—=6X—0Y




Space-Charge Effects

 Phase advance can be used as a measure of space-charge intensity

matched envelope (smooth)

N

* Undepressed Single Particle Trajectory ~ o,
* Space-Charge Depressed Single Particle Trajectory ~ o

: : : . o/ol0 =1/2=0.5
So in this case, normalized phase advance 1s



Envelope Modes 1in the Smooth
Approximation

Mode scaling as a function of space-charge (normalized phase advance)
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University of Maryland Electron

Ring (UMER)

Robust, scalable research facility for intense-beam experiments

Beam Energy: 10 keV

= =0.2

11.52 m Circumference

Circulation Time: 197
ns

Bunch Length: 100 ns
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Tunable UMER
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Experimental Outline

* Excite quadrupole mode with
RF-driven electric quadrupole
at RC9

 Image beam using KO
technique with gated PIMAX
camera and 3ns-resolution
fast phosphor screen at RC8
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Apparatus — Quadrupole

I designeditin
Solidworks s T N Y 3

ELY_per_meter]

5.0000e+003
. 6429e+003
4, 2857e+003

3. 92864003
3.5714e4003
3. 21434003

2.8571e+083
2.5000e+003
2.1429€+083
1,7857¢4003
1.4286e+003
1.0714e+083
7.1429e+002
3.5714e4002
©.0000e+200 | =

e I built it in the Machine
Shop

[ simulated 1t with

Maxwell 3D and Poisson
Superfish

* I simulated fringe field
particle tracing in Matlab

Simulation

Measurement

o

Voltage (mV)
£ [3.]
Voltage (V)

w

2IN)




V(t)

Apparatus — RF Box

* I designed, built, and
soldered the RF box

 The quadrupole acts as a
capacitor in the RF circuit

8 W




Reminder — Goal of Experiment

* Find the RF driving frequencies at which
envelope resonances occur

 Compare results with simulation

e Infer Emittance



Consider a periodically driven 1-D
SHO (Reductionist Toy Model)

* ®,1s the natural (resonant) frequency of the oscillator (env. mode)
* , 1s the RF driving frequency of the quadrupole

« A, 1s the amplitude of the rf quadrupole

* nis the number of interactions with the quadrupole (or turn)

T is the period between interactions (197 ns)



Analytic Solution

...Steady State Structure (7—)...
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1 Resonance Conditions

Three Frequency System

/ /40 ="Unknown"~37 MHz

[k =Known, Variable

O=1/7 =5 MHz = Known
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Resonance Lines (Dispersion Relation)
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What Frequencies Do Resonances Occur?
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Agreement in Simulation and Experiment
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Resonance Frequencies vs Emittance

” Envelope solver
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Resonance Frequencies vs Emittance

- Envelope Solver
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Agreement in Simulation and Experiment
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Emittance vs. Bias Voltage
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Measuring Frequency by Beam Halo

Resonance Conditions for Halo Growth
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Conclusions

Envelope mode frequencies can be used as a
sensitive, non-invasive emittance diagnostic in high-
Intensity rings

Measurements of multi-turn envelope excitations
shows good agreement with simulation

Improvements can be made by applying more kicks
before measurement (and before space-charge
bunch-end erosion)

Halo formation can be used as a diagnostic in rings
with longer beam lifetime
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Resonant Growth

Turn Number
Kick Frequency (MHz)



Amplitude Dependence

Envelope Solver

Kick Amplitude (Radians)
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Excursion From Matched Beam §X, §Y (m

Envelope Simulations
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Experimental Phase Scan
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PIC Code Halo

WARP PIC simulations of experiment

Beam with no halo Beam with halo
Y vs X Y'vsY Y vs X Y'vsY
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